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 Abstract – The dorsal cochlear nucleus (DCN) is part of the first 
stage of auditory processing in the central nervous system. 
Experimental evidence has provided a conceptual model for a 
portion of the DCN neural circuit that serves as a basis for the 
computational model described in this paper. 

The model consists of four neural populations arranged 
tonotopically. The pattern of convergence from one population 
to another and the strengths of those connections are important 
model parameters. Lumped parameter electrical circuit models 
are used to model the membrane potential of individual cells. 
Synapses are simulated by activating variable conductances in 
postsynaptic cells according to spike activity in presynaptic cells. 
The level of detail incorporated in the model is a good 
compromise between biophysical accuracy and the 
computational tractability required to simulate relatively large 
networks. 

Results are shown demonstrating the ability of the model to 
replicate features of DCN cross-correlation functions and to 
simulate DCN response properties with quantitative accuracy. 
The model is a useful tool for exploring hypotheses regarding 
DCN structure and function. 
Keywords - cochlear nucleus, hearing, computational modeling, 
parameter estimation 
 

I. INTRODUCTION 
 
The most well understood component of the dorsal cochlear 
nucleus (DCN) neural circuit centers around the interaction of 
type II and type IV units. Type II units are characterized by a 
lack of spontaneous activity and a weak response to 
broadband noise [1]. Their responses to best frequency (BF) 
tones feature large firing rates that increase with sound 
pressure level up to a point beyond which firing rates 
gradually decrease. Type IV units are spontaneously active 
and generally excited by broadband noise. They are excited 
by BF tones for levels near threshold, but strongly inhibited at 
higher levels [2]. Type IV units have been associated with the 
projection neurons of the DCN [3]. The reciprocal nature of 
the response properties of type II units and type IV units led 
to a conceptual model of the DCN in which both unit types 
receive excitatory input from the auditory nerve (AN) while 
type II units inhibit type IV units [4]. Further evidence for an 
inhibitory interaction between type II and type IV units was 
later provided by cross-correlation experiments [5, 6]. 
 Experiments using notch noise stimuli have suggested 
another important source of inhibition onto type IV units [7, 
8]. Type IV units give excitatory responses to noise 
containing very narrow notches. Responses decrease with 
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increasing notch width, eventually becoming inhibitory. For 
the widest notches, the response approaches the spontaneous 
rate of the unit. Such behavior is consistent with the existence 
of a broadly-tuned source of inhibition, or wideband inhibitor 
(WBI) [7]. The WBI is presumed to be less sensitive than  
type IV units to the missing energy in the notch, so that as the 
notch is widened, the balance of synaptic drive to the type IV 
unit shifts from excitatory to inhibitory. The WBI may also 
be responsible for suppressing the responses of type II units 
to broadband noise. 
 This paper describes a computational model of DCN 
neural circuitry based on the interactions of AN fibers, type II 
units, type IV units and the WBI. Simulations are shown 
dealing with the interactions of DCN units in response to 
tonal stimuli, and DCN responses to wideband stimuli. All 
results are drawn from our previous modeling studies [9-13]. 
 

II. METHODOLOGY 
 
A. Organization of the model 
 

The model consists of 800 isofrequency slices, each 
containing a single AN fiber, as shown in Fig. 1A. AN fibers 
were simulated using the model of Carney [15] and were 
assigned characteristic frequencies from 1.25 kHz to 10 kHz 
in 0.005 octave steps. The model thus spans 4 octaves and is 
centered at 5 kHz. 

 A nomenclature for naming model elements was 
developed in order to distinguish clearly model results from 
experimental results. Thus, in addition to an AN fiber, each 
slice contains one W-cell (model WBI), one I2-cell (model 
type II unit) and one P-cell (principal cell, model type IV 
unit). The source labeled “nonspecific afferents” provides 
tonic excitatory drive to the P-cells. 

 The model populations were connected in a manner 
consistent with the conceptual model of DCN neural circuitry 
(Fig. 1A). Three parameters were used to specify the 
convergence of one population onto another, as illustrated in 
Fig. 1B for two populations labeled “A” and “B”. Each target 
cell in “B” receives input from NA→B source cells “A”, drawn 
randomly from a band BWA→B octaves wide. The octave ratio 
of the source band center frequency to the target cell best 
frequency is indicated by the parameter CA→B.  

 
B. Single cell model 
 

Individual W-, I2-, and P-cells were implemented using the 
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neuromime of MacGregor [14], shown in Fig. 1C. Two 
branches represent the membrane capacitance and leakage 
conductance, specified jointly by the membrane time constant 
τm. Synapses are effected by means of variable conductances 
such as those illustrated in the two rightmost branches of Fig. 
1C. Each model neuron has one such branch for each 
population from which it receives input. An action potential 
in a source cell “A” activates the conductance gA→B in a 
target cell “B”. The activation consists of a step increase and 
exponential decay where the step size σA→B and time constant 
τA→B are important model parameters. Note that the sign of 
the synapse is determined by the value of the associated 
reversal potential. 

Voltage dependent conductances underlying the action 
potential were not simulated. Rather, when the membrane 
potential exceeded its threshold θ, the event time was 
recorded and the variable potassium conductance underwent a 

step increase of height bK followed by an exponential decay 
with time constant τK. 

 
III. RESULTS 

 
A. Cross-correlation simulations 
 
 The model was used to explore mechanisms underlying 
certain stimulus-dependent effects that have been observed in 
experimentally obtained cross-correlograms [9-11]. For 
example, Fig. 2A shows the cross-correlation of spike trains 
from one I2-cell and one P-cell at three different sound 
pressure levels. The correlograms are derived from responses 
to 50-s BF tones and are referenced to the I2-cell spike train. 
The primary feature is an inhibitory trough (IT) that 
represents a decrease in P-cell discharge probability 
following an I2-cell event and is consistent with the known 
inhibitory connection between these two model cells. Note 
that the IT decreases in size as a function of stimulus level. 
The simulated ITs of Fig. 2A are qualitatively similar to those 
obtained experimentally from type II-type IV unit pairs [5, 6]. 
 “Effectiveness” is a measure of IT strength computed by 
finding the area of the cross-correlogram beneath the mean 
discharge rate (black filled regions in Fig. 2A). Fig. 2B plots 
effectiveness as a function of stimulus level for model  
(symbols) and experimental (bold lines) data. The model 
successfully replicates the experimentally observed decrease 
in effectiveness with increasing stimulus level. Furthermore, 
since the I2-cell to P-cell synapse is constructed to be 
nonmodifiable, the level dependency is due to the overall 
decrease in P-cell discharge rate, rather than plasticity in the 
circuit [11]. Finally, effectiveness values tend to be larger for 
the simulations than for the experimental data. It was possible 
to shift the model effectiveness curves by trading an increase 
in the parameter NI2→P for a decrease in σI2→P [11]. In this 
way, the cross-correlation data provided a basis for 
constraining the connection parameters of the model. 
 
B. Simulations of type II units 
 
 Accurate simulations of type II units were made possible 
by the addition of wideband inhibition to the model. Fig. 3A 
shows the rate-level curves for a representative I2-cell in 
response to BF tones and broadband noise. The weak noise 
response, and vigorous but nonmonotonic BF tone response 
are characteristic of DCN type II units. 
 The parameter BWAN→W was optimized by systematically 
varying its value over a range of 4 octaves (Fig. 3B). At each 
step, the product of NAN→W and σAN→W was adjusted to give a 
weak noise response (~25 spike/s). The falling slope of the 
I2-cell BF tone rate-level curve was then plotted as a function 
of  BWAN→W. Most type II units have normalized tone slopes 
greater than –0.012/dB. This was achieved by the model 
when BWAN→W was at least 2.8 octaves. Interestingly, 
experimental evidence suggests that the putative source of 
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Fig. 1. (A) Diagram illustrating the connections between the cell 
populations of the DCN model. The populations are arranged in a 
tonotopic fashion. (B) Parameters used to specify the convergence of a 
cell population “A” onto a target cell from population “B”. (C) 
Lumped parameter electric circuit model used to model the membrane 
potential of single cells. Cm, membrane capacitance; G, resting 
conductance; GK, Gex, Gin, variable potassium, excitatory synaptic and 
inhibitory synaptic conductances, respectively; EK, Eex, Ein, 
corresponding reversal potentials. Synaptic activation results in the 
conductance change shown. Modified from [13]. 
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wideband inhibition to the DCN has a bandwidth of about 3 
octaves [16]. 
 
C. Wideband inhibition of type IV units 
 
 The incorporation of wideband inhibition also made 
possible quantitatively accurate simulations of type IV unit 
notch noise responses (Fig. 4). Qualitative results suggested 
that the parameters BWAN→W, σAN→P, and σW→P determine the 
major features of the rate-versus-cutoff-frequency plots. 
These parameters were then systematically varied to produce 
900 simulated data sets. A brute force search was used to find 
the parameter set that minimized the sum of the squared error 

(SSE) between data and model. Fig. 4A shows one example 
of a good model fit to the notch noise response of a DCN type 
IV unit. 
  The sensitivity of the fit to the parameter values is 
illustrated by the contours of equal SSE in Fig. 4B-D. In each 
panel, a different parameter is held fixed at its optimal value. 
The contours tend to be elliptical in shape and suggest that 
the objective function has a compact minimum. This indicates 
that the fit is indeed sensitive to the parameter values and that 
the optimal fit is relatively unique. 
 

IV. DISCUSSION 
 

This model represents a balance between biophysical 
accuracy at the single cell level and the computational 
tractability of simulating a relatively large neural network. 
The MacGregor neuromime is computationally efficient 
because it omits the details of the Hodgkin-Huxley 
conductances as well as the complexities of dendritic cable 
properties. At the same time, it provides a rudimentary 
representation of synaptic physiology and the integrative 
properties of a cell membrane. Purely algebraic network 
models might simulate the steady state behavior of DCN 
neurons with reasonable accuracy and great speed, but lack 
the temporal structure necessary to investigate time-
dependent phenomenon, such as the cross-correlation results 
of Fig. 2. Thus, we feel the implementation described here 
provides greater flexibility in terms of the range of 
physiological data that can be explored.  

A quantitative approach proved useful in optimizing 
parameter values and assessing simulation accuracy, as 
illustrated in Figs. 3-4. Sensitivity analysis was particularly 
useful for quantifying the uniqueness of optimal parameter 
fits. Given that type IV units arise from both fusiform and 
giant cells of the DCN, it may be possible for the parameter 
estimation techniques described here to provide a basis for 
segregating physiological data according to anatomical 
substrate. 
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Fig. 2. (A) Cross-correlograms derived from spike trains of one I2-cell 
and one P-cell, at three different levels. The I2-cell provides one 
inhibitory synapse to the P-cell and is the reference unit. Center line 
indicates mean discharge rate. Dotted lines indicate the ±2 standard 
deviation confidence limits expected for independent firing. Binwidth 
= 0.3ms. E, effectiveness; θ, I2-cell threshold (~10 dB SPL). (B) Plots 
of effective versus sound pressure level for four model I2-cell/P-cell 
pairs and eight type II-type IV unit pairs. Level is plotted with respect 
to either the I2-cell or type II unit threshold. Modified from [11]. 
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Fig. 3. (A) I2-cell rate-level curves are similar to those of DCN type II 
units. m, normalized tone slope (1000/dB) which is the slope of the 
falling portion of the BF rate-level curve normalized by the maximum 
firing rate. (B) Normalized tone slope as a function of W-cell 
bandwidth. Modified from [12]. 
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V. CONCLUSION 

 
 This paper has highlighted the ability of our model to 
replicate features of  DCN cross-correlation functions and to 
simulate type II unit and type IV unit responses with 
quantitative accuracy. Other studies have used the model to 
explore differences in DCN physiology between cats and 
gerbils [10] and to investigate the effects of barbiturate 
anesthesia on DCN response patterns [17]. The model has 
thus proven to be a useful tool for exploring hypotheses 
regarding DCN structure and function. 
 

 
REFERENCES 

 
[1] E. D. Young and H. F. Voigt, "Response properties of 

type II and type III units in dorsal cochlear nucleus," 
Hearing Research, vol. 6, pp. 153-169, 1982. 

[2] E. F. Evans and P. G. Nelson, "The responses of single 
neurons in the cochlear nucleus of the cat as a function of 

their location and the anesthetic state," Exp. Brain Res., 
vol. 17, pp. 402-427, 1973. 

[3] E. D. Young, "Identification of response properties of 
ascending axons from dorsal cochlear nucleus," Brain 
Research, vol. 200, pp. 23-38, 1980. 

[4] E. D. Young and W. E. Brownell, "Responses to tones 
and noise of single cells in dorsal cochlear nucleus of 
unanesthetized cats," J. Neurophysiol., vol. 39, pp. 282-
300, 1976. 

[5] H. F. Voigt and E. D. Young, "Evidence of inhibitory 
interactions between neurons in the dorsal cochlear 
nucleus," J. Neurophysiol., vol. 44, pp. 76-96, 1980. 

[6] H. F. Voigt and E. D. Young, "Neural cross-correlation 
analysis of inhibitory interactions in dorsal cochlear 
nucleus," J. Neurophysiol., vol. 64, pp. 1590-1610, 1990. 

[7] I. Nelken and E. D. Young, "Two separate inhibitory 
mechanisms shape the responses of dorsal cochlear 
nucleus type IV units to narrowband and wideband 
stimuli," J. Neurophysiol., vol. 71, pp. 2446-2462, 1994. 

[8] G. A. Spirou and E. D. Young, "Organization of dorsal 
cochlear nucleus type IV unit response maps and their 
relationship to activation by band-limited noise," J 
Neurophysiol, vol. 66, pp. 1750-1768, 1991. 

[9] K. A. Davis and H. F. Voigt, "Neural modeling of the 
dorsal cochlear nucleus: cross-correlation analysis of 
short-duration tone-burst responses," Biol Cybern, vol. 71, 
pp. 511-521, 1994. 

[10] K. A. Davis and H. F. Voigt, "Computer simulation of 
shared input among projection neurons in the dorsal 
cochlear nucleus," Biol Cybern, vol. 74, pp. 413-425, 
1996. 

[11] H. F. Voigt and K. A. Davis, "Computer simulations of 
neural correlations in the dorsal cochlear nucleus.," in 
Cochlear Nucleus: Structure and Function in Relation to 
Modeling, W. A. Ainsworth, Ed. London: JAI Press, 
1996, pp. 351-375. 

[12] K. E. Hancock, K. A. Davis, and H. F. Voigt, "Modeling 
inhibition of type II units in the dorsal cochlear nucleus," 
Biol. Cybern., vol. 76, pp. 419-428, 1997. 

[13] K. E. Hancock and H. F. Voigt, "Wideband inhibition of 
dorsal cochlear nucleus type IV units in cat: a 
computational model," Ann Biomed Eng, vol. 27, pp. 73-
87, 1999. 

[14] R. J. MacGregor, Neural and Brain Modeling. San 
Diego: Academic Press, 1987. 

[15] L. H. Carney, "A model for the responses of low-
frequency auditory nerve fibers in cat," J Acoust Soc Am, 
vol. 93, pp. 401-417, 1993. 

[16] A. R. Palmer, D. Jiang, and D. H. Marshall, "Responses 
of ventral cochlear nucleus onset and chopper units as a 
function of signal bandwidth," J. Neurophysiol., vol. 75, 
pp. 780-794, 1996. 

[17] H. Fan, "The Effects of Barbiturates on the Response 
Properties of Dorsal Cochlear Nucleus (DCN) Neurons in 
Decerebrate Gerbil". Boston, MA: Boston University, 
2000. 

Notch cutoff frequency (kHz)
0.625 2.5 5 10

M
ea

n 
fir

in
g 

ra
te

 (s
pi

ke
s/

s)

0

100

200

Data
Model

φmin = 1.928
BWAN!W = 2.50 oct.
σAN!P = 0.30
σW!P = 0.60

σAN!P

0.1 0.3 0.5

σ W
!

P

0.2

0.6

1.0

BWAN!W

1 2 3

σ W
!

P

0.2

0.6

1.0

BWAN!W

1 2 3

σ AN
!

P

0.1

0.3

0.5

A

B C

D

 
Fig. 4. (A) Best fit of the model to type IV unit notch noise response 
data. Fit was obtained by minimizing the SSE over the three 
parameters BWAN→W, σAN→P, and σW→P. (B-D) Equal SSE contours 
demonstrating the sensitivity of the fit to parameter values. The 
contours represent SSE/SSEmin = 1.5, 2, 5, 10, and 15 from inside to 
outside. In each panel, a different parameter is held fixed at its optimal 
value. Data from [8]. Figure modified from [13]. 
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